VULCÃO
A palavra "vulcão" deriva do nome do deus do fogo na mitologia romana Vulcano. A ciência que estuda os vulcões designa-se por vulcanologia.
Vulcão é uma estrutura geológica criada quando o magma, gases e partículas quentes (como cinzas) escapam para a superfície terrestre. Eles ejectam altas quantidades de poeira, gases e aerossóis na atmosfera, podendo causar resfriamento climático temporário. São frequentemente considerados causadores de poluição natural. Tipicamente, os vulcões apresentam formato cónico e montanhoso.
A erupção de um vulcão pode resultar num grave desastre natural, por vezes de consequências planetárias. Assim como outros desastres dessa natureza, as erupções são imprevisíveis e causam danos indiscriminados. Entre outras coisas, tendem a desvalorizar os imóveis localizados em suas vizinhanças, prejudicar o turismo e consumir a renda pública e privada em reconstruções. Na Terra, os vulcões tendem formar-se junto das margens das placas tectónicas. No entanto, existem excepções quando os vulcões ocorrem em zonas chamadas de hot spots (pontos quentes). Por outro lado, os arredores de vulcões, formados de lava arrefecida, tendem a ser compostos de solos bastante férteis para a agricultura.
Tipos de vulcão
Uma das formas de classificação dos vulcões é através do tipo de material que é eruptido, o que afecta a forma do vulcão. Se o magma eruptido contém uma elevada percentagem em sílica (superior a 65%) a lava é chamada de félsica ou "ácida" e tem a tendência de ser muito viscosa (pouco fluida) e por isso solidifica rapidamente. Os vulcões com este tipo de lava têm tendência a explodir devido ao facto da lava facilmente obstruir a chaminé vulcânica. O Monte Pelée na Martinica é um exemplo de um vulcão deste tipo.
Se, por outro lado, o magma é relativamente pobre em sílica (conteúdo inferior a 52%) é chamado de máfico ou "básico" e causa erupções de lavas muito fluidas capazes de escorrer por longas distâncias. Um bom exemplo de uma escoada lávica máfica é a do Grande Þjórsárhraun (Thjórsárhraun) originada por uma fissura eruptiva quase no centro geográfico da Islândia há cerca de 8000 anos. Esta escoada percorreu cerca de 130 quilómetros até ao mar e cobriu uma área com 800 km².
Monte Erebus, um exemplo de vulcão-escudo.
Vulcão Mayon, exemplo de um estratovulcão.
Vulcão-escudo: o Havaí e a Islândia são exemplos de locais onde são encontrados vulcões que expelem enormes quantidades de lava que gradualmente constroem uma montanha larga com o perfil de um escudo. As escoadas lávicas destes vulcões são geralmente muito quentes e fluidas, o que contribui para ocorrerem escoadas longas. O maior vulcão deste tipo na Terra é o Mauna Loa, no Havaí, com 9000 m de altura (assenta no fundo do mar) e 120 km de diâmetro. O Monte Olimpus em Marte é um vulcão-escudo e também a maior montanha do sistema solar.
Cones de escórias: é o tipo mais simples e mais comum de vulcões. Esses vulcões são relativamente pequenos, com alturas geralmente menores que 300 metros de altura. Formam-se pela erupção de magmas de baixa viscosidade, com composições basálticas ou intermediárias.
Estratovulcões: também designados de "compostos", são grandes edifícios vulcânicos com longa atividade, forma geral cônica, normalmente com uma pequena cratera no cume e flancos íngremes, construídos pela intercalação de fluxos de lava e produtos piroclásticos, emitidos por uma ou mais condutas, e que podem ser pontuados ao longo do tempo por episódios de colapsos parciais do cone, reconstrução e mudanças da localização das condutas. Alguns dos exemplos de vulcões deste tipo são o Teide na Espanha, o Monte Fuji no Japão, o Cotopaxi no Equador, o Vulcão Mayon nas Filipinas e o Monte Rainier nos EUA. Por outro lado, esses edifícios vulcânicos são os mais mortíferos da Terra, envolvendo a perda da vida de aproximadamente 264000 pessoas desde o ano de 1500.
Caldeiras ressurgentes: são as maiores estruturas vulcânicas da Terra, possuindo diâmetros que variam entre 15 e 100 km². À parte de seu grande tamanho, caldeiras ressurgentes são amplas depressões topográficas com uma massa elevada central. Exemplos dessas estruturas são a Valles (EUA), Yellowstone (EUA) e Cerro Galan (Argentina).
Vulcões submarinos: são aqueles que estão abaixo da água. São bastante comuns em certos fundos oceânicos, principalmente na dorsal meso-atlântica. São responsáveis pela formação de novo fundo oceânico em diversas zonas do globo. Um exemplo deste tipo de vulcão é o vulcão da Serreta no Arquipélago dos Açores.
Génese dos vulcões
Os movimentos e a dinâmica do magma, tal como a maior parte do interior da Terra, ainda são pouco conhecidos. No entanto é sabido que uma erupção é precedida de movimentos de magma do interior da Terra até à camada externa sólida (crosta terrestre) ocupando uma câmara magmática debaixo de um vulcão. Eventualmente o magma armazenado na câmara magmática é forçado a subir e é extruído e escorre pela superfície do planeta como lava, ou o magma pode aquecer água nas zonas próximas causando descargas explosivas de vapor; pode acontecer também que os gases que se libertam do magma projectem rochas, piroclastos, obsidianas e/ou cinzas vulcânicas. Apesar de serem sempre forças muito poderosas, as erupções podem variar de efusivas a extremamente explosivas.
A maioria dos vulcões terrestres tem origem nos limites destrutivos das placas tectónicas, onde a crosta oceânica é forçada a mergulhar por baixo da crosta continental, dado que esta é menos densa do que a oceânica. A fricção e o calor causados pelas placas em movimento leva ao afundamento da crosta oceânica, e devido à baixa densidade do magma resultante este sobe. À medida que o magma sobe através de zonas de fractura na crosta terrestre, pode eventualmente ser expelido em um ou mais vulcões. Um exemplo deste tipo de vulcão é o Monte Santa Helena nos EUA, que se encontra na zona interior da margem entre a placa Juan de Fuca que é oceânica e a placa Norte-americana.
Ambientes tectónicos
Os vulcões encontram-se principalmente em três tipos principais de ambientes tectónicos:
Limites construtivos das placas tectónicas
Este é o tipo mais comum de vulcões na Terra, mas são também os observados menos frequentemente dado que a sua actividade ocorre maioritariamente abaixo da superfície dos oceanos. Ao longo do sistema de riftes oceânicos ocorrem erupções espaçadas irregularmente. A grande maioria deste tipo de vulcões é apenas conhecida devido aos sismos associados às suas erupções, ou ocasionalmente, se navios que passam nos locais onde existem, registam elevadas temperaturas ou precipitados químicos na água do mar. Em alguns locais a actividade dos riftes oceânicos levou a que os vulcões atingissem a superfície oceânica: a Ilha de Santa Helena e a Ilha de Tristão da Cunha no Oceano Atlântico e as Galápagos no Oceano Pacífico, permitindo que estes vulcões sejam estudados em pormenor. A Islândia também se encontra num rifte, mas possui características diferentes das de um simples vulcão.
Os magmas expelidos neste tipo de vulcões são chamados de MORB (do inglês Mid-Ocean Ridge Basalt que significa: "basalto de rifte oceânico") e são geralmente de natureza basáltica.
Limites destrutivos das placas tectónicas
Diagrama de limite destrutivo causando terremotos e uma erupção vulcânica.
Estes são os tipos de vulcões mais visíveis e bem estudados. Formam-se acima das zonas de subducção onde as placas oceânicas mergulham debaixo das placas terrestres. Os seus magmas são tipicamente "calco-alcalinos" devido a serem originários das zonas pouco profundas das placas oceânicas e em contacto com sedimentos. A composição destes magmas é muito mais variada do que a dos magmas dos limites construtivos.
Hot spots ou pontos quentes
Os vulcões de hot spots eram originalmente vulcões que não poderiam ser incluídos nas categorias acima referidas. Nos dias de hoje os hot spots referem-se a uma situação bastante mais específica - uma pluma isolada de material quente do manto que intercepta a zona inferior da crosta terrestre (oceânica ou continental), conduzindo à formação de um centro vulcânico que não se encontra ligado a um limite de placa. O exemplo clássico é a cadeia havaiana de vulcões e montes submarinos; o Yellowstone é também tido como outro exemplo, sendo a intercepção neste caso com uma placa continental.
A Islândia e os Açores são por vezes citados como outros exemplos, mas bastante mais complexos devido à coincidência do rift médio Atlântico com um hot spot. Não há consenso acerca do conceito de "hotspot", uma vez que os vulcanólogos não são consensuais acerca da origem das plumas "quentes do manto": se têm origem no manto superior ou no manto inferior. Estudos recentes levam a crer que vários subtipos de hot spots irão ser identificados.
Vulcão Mayon, exemplo de um estratovulcão.
Vulcão-escudo: o Havaí e a Islândia são exemplos de locais onde são encontrados vulcões que expelem enormes quantidades de lava que gradualmente constroem uma montanha larga com o perfil de um escudo. As escoadas lávicas destes vulcões são geralmente muito quentes e fluidas, o que contribui para ocorrerem escoadas longas. O maior vulcão deste tipo na Terra é o Mauna Loa, no Havaí, com 9000 m de altura (assenta no fundo do mar) e 120 km de diâmetro. O Monte Olimpus em Marte é um vulcão-escudo e também a maior montanha do sistema solar.
Cones de escórias: é o tipo mais simples e mais comum de vulcões. Esses vulcões são relativamente pequenos, com alturas geralmente menores que 300 metros de altura. Formam-se pela erupção de magmas de baixa viscosidade, com composições basálticas ou intermediárias.
Estratovulcões: também designados de "compostos", são grandes edifícios vulcânicos com longa atividade, forma geral cônica, normalmente com uma pequena cratera no cume e flancos íngremes, construídos pela intercalação de fluxos de lava e produtos piroclásticos, emitidos por uma ou mais condutas, e que podem ser pontuados ao longo do tempo por episódios de colapsos parciais do cone, reconstrução e mudanças da localização das condutas. Alguns dos exemplos de vulcões deste tipo são o Teide na Espanha, o Monte Fuji no Japão, o Cotopaxi no Equador, o Vulcão Mayon nas Filipinas e o Monte Rainier nos EUA. Por outro lado, esses edifícios vulcânicos são os mais mortíferos da Terra, envolvendo a perda da vida de aproximadamente 264000 pessoas desde o ano de 1500.
Caldeiras ressurgentes: são as maiores estruturas vulcânicas da Terra, possuindo diâmetros que variam entre 15 e 100 km². À parte de seu grande tamanho, caldeiras ressurgentes são amplas depressões topográficas com uma massa elevada central. Exemplos dessas estruturas são a Valles (EUA), Yellowstone (EUA) e Cerro Galan (Argentina).
Vulcões submarinos: são aqueles que estão abaixo da água. São bastante comuns em certos fundos oceânicos, principalmente na dorsal meso-atlântica. São responsáveis pela formação de novo fundo oceânico em diversas zonas do globo. Um exemplo deste tipo de vulcão é o vulcão da Serreta no Arquipélago dos Açores.
Génese dos vulcões
Os movimentos e a dinâmica do magma, tal como a maior parte do interior da Terra, ainda são pouco conhecidos. No entanto é sabido que uma erupção é precedida de movimentos de magma do interior da Terra até à camada externa sólida (crosta terrestre) ocupando uma câmara magmática debaixo de um vulcão. Eventualmente o magma armazenado na câmara magmática é forçado a subir e é extruído e escorre pela superfície do planeta como lava, ou o magma pode aquecer água nas zonas próximas causando descargas explosivas de vapor; pode acontecer também que os gases que se libertam do magma projectem rochas, piroclastos, obsidianas e/ou cinzas vulcânicas. Apesar de serem sempre forças muito poderosas, as erupções podem variar de efusivas a extremamente explosivas.
A maioria dos vulcões terrestres tem origem nos limites destrutivos das placas tectónicas, onde a crosta oceânica é forçada a mergulhar por baixo da crosta continental, dado que esta é menos densa do que a oceânica. A fricção e o calor causados pelas placas em movimento leva ao afundamento da crosta oceânica, e devido à baixa densidade do magma resultante este sobe. À medida que o magma sobe através de zonas de fractura na crosta terrestre, pode eventualmente ser expelido em um ou mais vulcões. Um exemplo deste tipo de vulcão é o Monte Santa Helena nos EUA, que se encontra na zona interior da margem entre a placa Juan de Fuca que é oceânica e a placa Norte-americana.
Ambientes tectónicos
Os vulcões encontram-se principalmente em três tipos principais de ambientes tectónicos:
Limites construtivos das placas tectónicas
Este é o tipo mais comum de vulcões na Terra, mas são também os observados menos frequentemente dado que a sua actividade ocorre maioritariamente abaixo da superfície dos oceanos. Ao longo do sistema de riftes oceânicos ocorrem erupções espaçadas irregularmente. A grande maioria deste tipo de vulcões é apenas conhecida devido aos sismos associados às suas erupções, ou ocasionalmente, se navios que passam nos locais onde existem, registam elevadas temperaturas ou precipitados químicos na água do mar. Em alguns locais a actividade dos riftes oceânicos levou a que os vulcões atingissem a superfície oceânica: a Ilha de Santa Helena e a Ilha de Tristão da Cunha no Oceano Atlântico e as Galápagos no Oceano Pacífico, permitindo que estes vulcões sejam estudados em pormenor. A Islândia também se encontra num rifte, mas possui características diferentes das de um simples vulcão.
Os magmas expelidos neste tipo de vulcões são chamados de MORB (do inglês Mid-Ocean Ridge Basalt que significa: "basalto de rifte oceânico") e são geralmente de natureza basáltica.
Limites destrutivos das placas tectónicas
Diagrama de limite destrutivo causando terremotos e uma erupção vulcânica.
Estes são os tipos de vulcões mais visíveis e bem estudados. Formam-se acima das zonas de subducção onde as placas oceânicas mergulham debaixo das placas terrestres. Os seus magmas são tipicamente "calco-alcalinos" devido a serem originários das zonas pouco profundas das placas oceânicas e em contacto com sedimentos. A composição destes magmas é muito mais variada do que a dos magmas dos limites construtivos.
Hot spots ou pontos quentes
Os vulcões de hot spots eram originalmente vulcões que não poderiam ser incluídos nas categorias acima referidas. Nos dias de hoje os hot spots referem-se a uma situação bastante mais específica - uma pluma isolada de material quente do manto que intercepta a zona inferior da crosta terrestre (oceânica ou continental), conduzindo à formação de um centro vulcânico que não se encontra ligado a um limite de placa. O exemplo clássico é a cadeia havaiana de vulcões e montes submarinos; o Yellowstone é também tido como outro exemplo, sendo a intercepção neste caso com uma placa continental.
A Islândia e os Açores são por vezes citados como outros exemplos, mas bastante mais complexos devido à coincidência do rift médio Atlântico com um hot spot. Não há consenso acerca do conceito de "hotspot", uma vez que os vulcanólogos não são consensuais acerca da origem das plumas "quentes do manto": se têm origem no manto superior ou no manto inferior. Estudos recentes levam a crer que vários subtipos de hot spots irão ser identificados.
Erupção do vulcão Stromboli, na costa da Sicília, Itália.
A ciência ainda não é capaz de prever com certeza absoluta quando um vulcão irá entrar em erupção, mas grandes progressos têm sido feitos no cálculo das probabilidades de tal evento ter lugar ou não num espaço de tempo relativamente curto. Os seguintes factores são analisados de forma a ser possível prever uma erupção:
Sismicidade
Microssismos e sismos de baixa magnitude ocorrem sempre que um vulcão "acorda" e a sua entrada em erupção se aproxima no tempo. Alguns vulcões possuem normalmente actividade sísmica de baixo nível, mas um aumento significativo desta mesma actividade poderá preceder uma erupção. Outro sinal importante é o tipo de sismos que ocorrem. A sismicidade vulcânica divide-se em três grandes tipos: tremores de curta duração, tremores de longa duração e tremores harmónicos.
Os tremores de curta duração são semelhantes aos sismos tectónicos. São resultantes da fracturação da rocha aquando de movimentos ascendentes do magma. Este tipo de sismicidade revela um aumento significativo da dimensão do corpo magmático próximo da superfície.
Crê-se que os tremores de longa duração indicam um aumento da pressão de gás na estrutura do vulcão. Podem ser comparados ao ruído e vibração que por vezes ocorre na canalização em casas. Estas oscilações são o equivalente às vibrações acústicas que ocorrem no contexto de uma câmara magmática de um vulcão.
Os tremores harmónicos ocorrem devido ao movimento de magma abaixo da superfície. A libertação contínua de energia deste tipo de sismicidade contrasta com a libertação contínua de energia que ocorre num sismo associado ao movimento de falhas tectónicas.
Os padrões de sismicidade são geralmente complexos e de difícil interpretação. No entanto, um aumento da actividade sísmica num aparelho vulcânico é preocupante, especialmente se sismos de longa duração se tornam muito frequentes e se tremores harmónicos ocorrem.
Emissões gasosas
À medida que o magma se aproxima da superfície a sua pressão diminui, e os gases que fazem parte da sua composição libertam-se gradualmente. Este processo pode ser comparado ao abrir de uma lata de um refrigerante com gás, quando o dióxido de carbono se escapa. O dióxido de enxofre é um dos principais componente dos gases vulcânicos, e o seu aumento precede a chegada de magma próximo da superfície. Por exemplo, a 13 de Maio de 1991, 500 toneladas de dióxido de enxofre foram libertadas no Monte Pinatubo nas Filipinas. As emissões de dióxido de enxofre chegaram num curto espaço de tempo às 5 000 toneladas. O Monte Pinatubo entrou em erupção a 12 de Junho de 1991.
Deformação do terreno
A deformação do terreno na área do vulcão significa que o magma encontra-se acumulado próximo da superfície. Os cientistas monitorizam os vulcões activos e medem frequentemente a deformação do terreno que ocorre no vulcão, tomando especial cuidado com a deformação acompanhada de emissões de dióxido de enxofre e tremores harmónicos, sinais que tornam bastante provável um evento eminente.
A ciência ainda não é capaz de prever com certeza absoluta quando um vulcão irá entrar em erupção, mas grandes progressos têm sido feitos no cálculo das probabilidades de tal evento ter lugar ou não num espaço de tempo relativamente curto. Os seguintes factores são analisados de forma a ser possível prever uma erupção:
Sismicidade
Microssismos e sismos de baixa magnitude ocorrem sempre que um vulcão "acorda" e a sua entrada em erupção se aproxima no tempo. Alguns vulcões possuem normalmente actividade sísmica de baixo nível, mas um aumento significativo desta mesma actividade poderá preceder uma erupção. Outro sinal importante é o tipo de sismos que ocorrem. A sismicidade vulcânica divide-se em três grandes tipos: tremores de curta duração, tremores de longa duração e tremores harmónicos.
Os tremores de curta duração são semelhantes aos sismos tectónicos. São resultantes da fracturação da rocha aquando de movimentos ascendentes do magma. Este tipo de sismicidade revela um aumento significativo da dimensão do corpo magmático próximo da superfície.
Crê-se que os tremores de longa duração indicam um aumento da pressão de gás na estrutura do vulcão. Podem ser comparados ao ruído e vibração que por vezes ocorre na canalização em casas. Estas oscilações são o equivalente às vibrações acústicas que ocorrem no contexto de uma câmara magmática de um vulcão.
Os tremores harmónicos ocorrem devido ao movimento de magma abaixo da superfície. A libertação contínua de energia deste tipo de sismicidade contrasta com a libertação contínua de energia que ocorre num sismo associado ao movimento de falhas tectónicas.
Os padrões de sismicidade são geralmente complexos e de difícil interpretação. No entanto, um aumento da actividade sísmica num aparelho vulcânico é preocupante, especialmente se sismos de longa duração se tornam muito frequentes e se tremores harmónicos ocorrem.
Emissões gasosas
À medida que o magma se aproxima da superfície a sua pressão diminui, e os gases que fazem parte da sua composição libertam-se gradualmente. Este processo pode ser comparado ao abrir de uma lata de um refrigerante com gás, quando o dióxido de carbono se escapa. O dióxido de enxofre é um dos principais componente dos gases vulcânicos, e o seu aumento precede a chegada de magma próximo da superfície. Por exemplo, a 13 de Maio de 1991, 500 toneladas de dióxido de enxofre foram libertadas no Monte Pinatubo nas Filipinas. As emissões de dióxido de enxofre chegaram num curto espaço de tempo às 5 000 toneladas. O Monte Pinatubo entrou em erupção a 12 de Junho de 1991.
Deformação do terreno
A deformação do terreno na área do vulcão significa que o magma encontra-se acumulado próximo da superfície. Os cientistas monitorizam os vulcões activos e medem frequentemente a deformação do terreno que ocorre no vulcão, tomando especial cuidado com a deformação acompanhada de emissões de dióxido de enxofre e tremores harmónicos, sinais que tornam bastante provável um evento eminente.
Comportamento dos vulcões
Indonésia-Lombok: Erupção do Monte Rinjani registrada em 1994.
Erupções freáticas (vapor).
Erupções explosivas de lava rica em sílica (e.g. riolito).
Erupções efusivas de lava pobre em sílica (e.g. Basalto).
Escoadas piroclásticas.
Lahars.
Emissões de dióxido de carbono.
Todas estas actividades podem ser um perigo potencial para o Homem. Para além disso a actividade vulcânica é muitas vezes acompanhada por sismos, águas termais, fumarolas e gêisers, entre outros fenómenos. As erupções vulcânicas são frequentemente precedidas por sismos de magnitude pouco elevada.
Activos, dormentes ou extintos?
Não existe um consenso entre os vulcanologistas para definir o que é um vulcão "activo". O tempo de vida de um vulcão pode ir de alguns meses até alguns milhões de anos. Por exemplo, em vários vulcões na Terra ocorreram várias erupções nos últimos milhares de anos mas actualmente não dão sinais de actividade.
Shiprock, erosão remanescente da garganta de um vulcão extinto.
Alguns cientistas consideram um vulcão activo quando está em erupção ou mostra sinais de instabilidade, nomeadamente a ocorrência pouco usual de pequenos sismos ou novas emissões gasosas significativas. Outros consideram um vulcão activo aquele que teve erupções históricas. É de salientar que o tempo histórico varia de região para região. Enquanto que no Mediterrâneo este pode ir até 3000 anos atrás, no Pacífico Noroeste dos Estados Unidos vai apenas até 300 anos atrás.
Vulcões dormentes são considerados aqueles que não se encontram actualmente em actividade (como foi definido acima) mas que poderão mostrar sinais de perturbação e entrar de novo em erupção.
Os vulcões extintos são aqueles que os vulcanólogos consideram pouco provável que entrem em erupção de novo, mas não é fácil afirmar com certeza que um vulcão está realmente extinto. As caldeiras têm tempo de vida que pode chegar aos milhões de anos, logo é difícil determinar se um irá voltar ou não a entrar em erupção, pois estas podem estar dormentes por vários milhares de anos.
Por exemplo a caldeira de Yellowstone, nos Estados Unidos, tem pelo menos 2 milhões de anos e não entrou em erupção nos últimos 640.000 anos, apesar de ter havido alguma actividade há cerca de 70.000 anos. Por esta razão os cientistas não consideram a caldeira de Yellowstone um vulcão extinto. Pelo contrário, esta caldeira é considerada um vulcão bastante activo devido à actividade sísmica, geotermia e à elevada velocidade do levantamento do solo na zona.
Alguns vulcões na Terra
Ver artigo principal: Lista de vulcões
Mapa mostrando as fronteiras entre as placas tectônicas e sub-recentes aéreas de vulcões.
Ojos del Salado (Andes, Chile Maior vulcão da Terra)
Monte Baker (Washington, EUA)
Vulcão de Cold Bay (Alasca, EUA)
El Chichon (Chiapas, México)
Pico de Orizaba (Veracruz/Puebla, México)
Cotopaxi (Equador)
Monte Fuji (Honshu, Japão)
Monte Hood (Oregon, EUA)
Monte Erebus (Ilha de Ross, Antártica)
Etna (Sicília, Itália)
Krafla (Islândia)
Hekla (Islândia)
Kick-'em-Jenny (Granada)
Kilauea (Havai, EUA)
Vulcão das Furnas (Ilha de São Miguel, Açores)
Klyuchevskaya Sopka (Kamchatka, Rússia)
Krakatoa (Rakata, Indonésia)
Mauna Kea (Havai, EUA)
Mauna Loa (Havai, EUA)
El Misti (Arequipa, Peru)
Novarupta (Alasca, EUA)
Pico (Ilha do Pico, Açores, Portugal)
Paricutín (Michoacán, México)
Monte Pinatubo (Filipinas)
Popocatépetl (México-Puebla, México)
Santorini (Santorini, Grécia)
Soufrière Hills , (Montserrat)
Monte Rainier (Washington, EUA)
Vulcão do Fogo (Ilha de São Miguel, Açores, Portugal)
Vulcão da Serreta, (Açores)
Vulcão da Urzelina, (Açores)
Monte Shasta (Califórnia, EUA)
Monte Santa Helena (Washington, EUA)
Surtsey (Islândia)
Tambora (Sumbava, Indonésia)
Teide (Tenerife, Ilhas das Canárias, Espanha)
White Island (Baía de Plenty, Nova Zelândia)
Vesúvio,(Baía de Nápoles, na Itália)
Mendanha - inativo -, Serra do Mendanha, Rio de Janeiro, Brasil)
São Domingos - inativo -, Serra de São Domingos, Poços de Caldas, Brasil
Monte Olimpus em Marte, o maior vulcão do Sistema Solar, com altura estimada entre 22 e 29 quilômetros.
A Lua não possui grandes vulcões e não é geologicamente activa, mas nela existem várias estruturas vulcânicas. Por outro lado crê-se que o planeta Vénus seja geologicamente activo, sendo cerca de 90% da sua superfície constituída por basalto o que leva a crer que o vulcanismo desempenha um papel importante na modelagem da superfície volumosa do planeta. As escoadas lávicas estão bastante presentes e muitas das estruturas da superfície de Vénus são atribuídas a formas de vulcanismo que não se encontram na Terra. Outros fenómenos do planeta Vénus são atribuídos a erupções vulcânicas, tais como as mudanças na atmosfera do planeta e a observação de relâmpagos.
: [editar] Tipos de erupção
A proporção de rochas, gases e lava que um vulcão emite determina o tipo de erupção. Os tipos de erupção recebem normalmente nomes relacionados com vulcões famosos onde se observou um comportamento vulcanológico característico. Alguns vulcões exibem somente um tipo de erupção durante um intervalo de actividade, enquanto que outros podem mostrar uma sequência de diferentes tipos.
As erupções vulcânicas podem ser divididas quanto à sua violência em explosivas e efusivas. As erupções explosivas são causadas pela acumulação de vapor e gases sob elevadas pressões, que são libertados de forma violenta. A interacção de águas subterrâneas e magma leva à produção de vapor, que retido debaixo de camadas de rocha se acumula até atingir uma pressão suficientemente elevada para a destruir e libertar-se para a atmosfera. Gases que eventualmente estejam dissolvidos no magma em ascensão no vulcão, por acção da elevada pressão no seu interior, podem também expandir rapidamente após a explosão inicial de vapor, formando uma explosão secundária que é por vezes mais intensa que a primária e que pode formar um fluxo piroclástico. Em contraste, nas erupções efusivas existe uma libertação lenta de lava de baixa viscosidade e com reduzido conteúdo volátil, não existindo fenómenos explosivos associados a este tipo de erupção.
Os vulcanologistas classificam as erupções da seguinte forma:
[editar] Erupção havaiana
Erupção havaiana. 1: pluma vulcânica; 2: fonte de lava; 3: cratera; 4: lago de lava; 5: fumarolas; 6: fluxo de lava; 7: camadas de lava e cinza; 8: estratos; 9: soleira; 10: chaminé vulcânica; 11: bolsa de magma; 12: dique.
A erupção havaiana é um tipo de erupção efusiva, sem descarga de gases, com magma basáltico de baixa viscosidade e temperaturas muito elevadas na chaminé vulcânica, ocorrendo caracteristicamente em hotspots mas também próximo de zonas de subducção. As erupções havaianas, assim denominadas por serem características dos vulcões no Havai, podem ocorrer ao longo de falhas ou fissuras, como aconteceu na erupção do Mauna Loa no Havai em 1950. Também podem ocorrer numa chaminé central, como na erupção de 1959 na cratera Kilauea Iki do vulcão Kilauea, Havai. Nas erupções em fissuras, a lava brota de uma fissura na zona rift de um vulcão e escorre pela encosta, juntando-se a outras correntes de lava. Nas erupções centrais, uma fonte de lava é ejectada a várias dezenas de metros de altura. Neste caso, a lava pode concentrar-se em pequenas crateras formando lagos de lava, ou formar cones, ou ainda alimentar rios de lava que escorram pela encosta. Há produção muito baixa de cinza vulcânica, o que as torna relativamente seguras de observar e por isso populares para os turistas.
O facto de o magma característico destas erupções conter uma baixa percentagem de água dissolvida (menos de 1%) e ser na sua maioria basalto confere-lhes o seu carácter efusivo. Praticamente toda a lava provinda dos vulcões havaianos é basalto toleiítico, uma rocha similar à produzida nas falhas oceânicas. No vulcão subaquático de Loihi foi detectada erupção de basalto relativamente rico em sódio e potássio (mais alcalino); este tipo de rocha poderá ser característico do início da formação das ilhas havaianas. Em etapas posteriores, houve maior erupção deste basalto alcalino e após um período de erosão houve erupção de pequenas quantidades de rochas invulgares, como a nefelite. Estas variações na constituição do magma provindo de erupções havaianas é estudado para entender o funcionamento das plumas do manto.
[editar] Erupção estromboliana
Erupção estromboliana. 1: pluma vulcânica; 2: lapilli; 3: chuva de cinza vulcânica; 4: fonte de lava; 5: bomba vulcânica; 6: fluxo de lava; 7: camadas de lava e cinza; 8: estratos; 9: soleira; 10: chaminé vulcânica; 11: bolsa de magma; 12: dique.
O nome provém do vulcão da ilha de Stromboli, na Sicília. Na erupção estromboliana brotam cinzas, gases, pequenos fragmentos de rocha quente (bombas vulcânicas, lapilli), que formam arcos luminosos no céu. Os fragmentos de lava combinam-se para formar rios de lava que escorrem pela encosta. Ocorrem explosões pouco violentas causadas pela acumulação de bolsas de gases, que sobem mais rapidamente que o magma que as rodeia.[1]
Tipicamente, a tefra encontra-se em incandescência quando é expulsa da chaminé, mas a sua superfície arrefece e toma uma coloração escura ou negra, podendo solidificar significativamente antes de atingir o solo. A tefra acumula-se na vizinhança da chaminé, formando um cone de cinza. A cinza é o produto mais comum, havendo também tipicamente uma menor parte de cinza vulcânica mais fina.
Os rios de lava são mais viscosos, logo mais curtos e espessos, que nas erupções havaianas, podendo ser acompanhados ou não de rocha piroclástica.
Os gases dissolvidos coalescem em bolhas que tomam dimensões suficientes para se elevarem através da coluna magmática, libertando-se no topo e enviando magma pelo ar. Existe libertação de gases vulcânicos em cada episódio eruptivo, por vezes com intervalos de apenas minutos. As bolhas de gases podem formar-se a profundidades até três quilómetros, sendo de difícil previsão. [2]
A actividade estromboliana pode ser bastante duradoura porque o sistema de condutas não é afectado pela actividade vulcânica, podendo o sistema eruptivo repetir-se. Por exemplo, o vulcão Paricutín encontrou-se em constante erupção entre 1943 e 1952, o monte Erebus produziu erupções durante pelo menos várias décadas e o próprio Stromboli tem tido erupções ao longo de milhares de anos.
[editar] Erupção pliniana
Ver artigo principal: Erupção pliniana
Erupção pliniana. 1: pluma vulcânica; 2: chaminé vulcânica; 3: chuva de cinza vulcânica; 4: camadas de lava e cinza; 5: estrato; 6: câmara magmática.
A erupção pliniana é associada à erupção do Monte Vesúvio em 79, descrita por Plínio o Novo, erupção essa que matou o seu pai Plínio, o Velho e soterrou as cidades de Pompeia e Herculano em cinza vulcânica. Na erupção pliniana, brotam fragmentos de rocha, lava viscosa e uma coluna de fumaça e gás. É usualmente o tipo de erupção mais poderoso. Associados a este tipo de erupção encontram-se frequentemente também rápidos fluxos piroclásticos. Erupções plinianas de grande intensidade, como as que ocorreram a 18 de Maio de 1980 no Monte Santa Helena ou a 15 de Junho de 1991 em Pinatubo nas Filipinas, podem enviar cinzas e gases vulcânicos a vários quilómetros de altitude, até à estratosfera, e a cinza resultante pode afectar áreas a centenas de quilómetros de distância na direcção dos ventos. São características distintas deste tipo de erupção a ejecção de grandes quantidades de pedra-pomes e fortes erupções contínuas de gases.
Erupções plinianas curtas podem durar menos de um dia. Eventos mais longos podem durar desde alguns dias a vários meses. As erupções mais prolongadas iniciam-se com a produção de cinza vulcânica ou fluxos piroclásticos. A quantidade de magma que brota pode ser tão grande que o topo do vulcão pode colapsar, formando uma caldeira. Pode haver deposição de cinza muito fina em áreas extensas. São frequentemente acompanhadas de forte ruído, como aquele produzido em Krakatoa.
As erupções plinianas de Krakatoa em 1883, Monte Santa Helena em 1980, Monte Tarumae (Japão) em 1667 e 1739[3], Tira em c. 1600 AEC, a que formou o Lago Crater em 4860 AEC e a do Monte Vesúvio em 79 são exemplos de erupções plinianas que resultaram na formação de caldeiras. A lava é normalmente riolítica e rica em silicatos; é raramente basáltica, tendo sido uma erupção com magma basáltico registada no Monte Tarawera em 1886.
[editar] Erupção vulcaniana
Erupção vulcaniana. 1: pluma vulcânica; 2: lapilli; 3: fonte de lava; 4: chuva de cinza vulcânica; 5: bomba vulcânica; 6: fluxo de lava; 7: camadas de lava e cinza; 8: estrato; 9: soleira; 10: chaminé magmática; 11: câmara magmática; 12:dique.
As erupções vulcanianas foram assim denominadas após as observações de erupções de 1888-1890 do vulcão na ilha de Vulcano, no Mar Tirreno, por Giuseppe Mercalli. Outro exemplo deste tipo de erupção foi a de Paricutín em 1947. Mercalli descreveu a erupção como "(...) disparos de canhão com longos intervalos (...)". Neste tipo de erupção, brotam enormes fragmentos de rocha quente; uma espessa nuvem de cinzas sai explosivamente da cratera a uma elevada altitude, formando alguma cinza fumegante uma nuvem esbranquiçada perto do topo do cone. A sua natureza explosiva deve-se ao conteúdo rico em sílica do magma, que aumenta a viscosidade e portanto a explosividade deste. Pode encontrar-se quase todo o tipo de magma neste tipo de erupção, mas magma com cerca de 55% de basalto-andesito (ou mais sílica) é o mais comum.
As erupções vulcanianas começam normalmente com erupções freatomagmáticas que podem ser extremamente ruidosas, devido ao aquecimento de água subterrânea pelo magma em ascensão. Este processo é usualmente seguido de uma explosão que desobstrui a chaminé vulcânica, erguendo-se uma coluna suja, cinzenta ou negra, devido à expulsão de rochas preexistentes na chaminé. As erupções vulcanianas podem lanças blocos de rocha de vários metros de dimensão a centenas de metros ou mesmo alguns quilómetros de distância. À medida que a chaminé é desobstruída, as nuvens de cinza tornam-se mais esbranquiçadas, sendo a saída de rolos de cinza similar à das erupções plinianas. Esta fase é seguida pela produção de lava viscosa contendo grandes quantidades de gases e produzindo cinza vulcânica vítrea. Conhece-se a ocorrência de fluxos piroclásticos, como aconteceu nas erupções do Stromboli em 1930, de Montserrat desde 1995 e do Monte Unzen entre 1991 e 1995.
A tefra é dispersa numa área maior que nas erupções havaianas e estrombolianas. A rocha piroclástica e os depósitos formam um cone vulcânico de cinzas, cobrindo a cinza uma grande área. A erupção finaliza com um fluxo de lava viscosa.
[editar] Erupção peleana
Erupção peleana. 1: pluma vulcânica; 2: chuva de cinza vulcânica; 3: cúpula de lava; 4: bomba vulcânica; 5: fluxo piroclástico; 6: Camadas de lava e cinza; 7: estratos; 8: chaminé magmática; 9: câmara magmática; 10: dique.
Numa erupção peleana ou nuée ardente ("nuvem ardente"), tal como a ocorrida no vulcão Mayon nas Filipinas em 1968, há grande quantidade de explosões de fragmentos de rocha quente, vapores, poeiras e cinzas a partir da cratera central. Estes materiais caem sobre a zona da cratera e formam avalanches que se deslocam a velocidades que podem chegar aos 160 km/h. O magma é geralmente viscoso e rico em riólito ou andesito. Este tipo de erupção partilha algumas características com as erupções vulcanianas, distinguindo-se pela avalanche de material piroclástico e a presença de uma cúpula de lava no topo do vulcão. Observam-se também curtos fluxos de cinza e criação de cones de pedra-pomes.
A fase inicial da erupção é caracterizada por fluxos piroclásticos. Os depósitos de tefra têm um menor volume e alcance que em erupções plinianas e vulcanianas. O magma viscoso forma uma cúpula escarpada ou uma agulha de lava na chaminé vulcânica. A cúpula pode colapsar mais tarde, resultando em fluxos de cinza e blocos de rocha quente. O ciclo eruptivo completa-se no espaço de alguns anos, podendo nalguns casos prolongar-se por décadas, como no caso de Santiaguito.[4]
As erupções peleanas podem causar grande destruição e perda de vidas se ocorrerem em zonas povoadas, como demonstrado pela devastação ocorrida em Saint-Pierre após a erupção do Monte Pelée na Martinica, em 1902. Outros exemplos incluem a erupção de 1948-1951 do Hibok-Hibok, a erupção de 1951 do Monte Lamington (a mais bem descrita até ao presente), a erupção de 1956 do Bezymianny, a erupção de 1968 do vulcão Mayon e a erupção de 1980 do Monte Santa Helena.[5]
[editar] Erupção subglacial
Erupção subglacial. 1: nuvem de vapor de água; 2: lago; 3: gelo; 4: camadas de lava e cinza; 5: estratos; 6: pillow lava; 7: chaminé magmática; 8: câmara magmática; 9: dique.
As erupções subglaciais ocorrem debaixo de gelo ou glaciares, podendo causar inundações e lahars e originar hialoclastite e pillow lava ("lava em almofada"). Apenas cinco erupções deste tipo ocorreram no presente. Algumas erupções subglaciares são provocadas por um tipo de vulcão subglacial, o tuya. Os tuyas na Islândia são denominados "montanhas mesa" devido aos seus topos planos. O tuya Butte, na Colômbia Britânica, é um exemplo deste tipo de vulcão.
Não é bem conhecida a termodinâmica das erupções subglaciais. Os escassos estudos publicados indicam que existe uma quantidade apreciável de calor retido na lava, sendo que uma unidade-volume de magma consegue derreter dez unidades-volume de gelo. A velocidade a que o gelo é derretido é, no entanto, ainda inexplicada e é uma ordem de magnitude maior em erupções reais que em modelos de previsão.
[editar] Erupção hidromagmática
Ver artigo principal: Erupção hidromagmática
As erupções hidromagmáticas, freatomagmáticas ou ultra-vulcanianas são conduzidas por vapor explosivo em expansão resultante do contacto entre solo frio ou águas de superfície frias e rocha quente ou magma. As explosões freáticas distinguem-se por lançarem fragmentos de rocha sólida preexistente na chaminé vulcânica, não havendo erupção de magma. A actividade freatomagmática é geralmente fraca, embora sejam conhecidos casos de forte actividade, como na erupção do vulcão Taal, nas Filipinas, em 1965, e a actividade de 1975-1976 em La Grande Soufrière, Guadalupe.
[editar] Erupções históricas
As piores erupções da História, que causaram maiores danos:
Krakatoa (Indonésia), 1883
Monte Pelée (Martinica), 1902
Nevado del Ruiz (Colômbia), 1985
Vesúvio (Itália), 1979
Monte Unzen (Japão), 1792
Destruição Saint Pierre na Martinica
Monte Pelée (ou Monte Pelair) é um vulcão situado em Saint Pierre, na Martinica. Em 1902, foi o causador de uma das mais devastadoras erupções vulcânicas de que se tem conhecimento.
Sabe-se que cerca de 30 mil pessoas morreram por causa da erupção, que deu uma completa nova concepção aos estudos vulcânicos. O fluxo piroclástico, uma cinza vulcânica com cerca de 300ºC, cobriu 20 km ao longo de toda cidade de Saint Pierre seguida pela lava, de aproximados 1000 ºC.
O efeito do fluxo piroclástico é tão devastador que em três minutos exterminou aquele povoado, derreteu casas, prédios. Pessoas foram encontradas queimadas, contorcidas, explodidas.
Em verdade, dois meses antes da erupção já se começava a perceber que tinha algo de errado com o vulcão; entretanto, um misto de ignorância e euforia impediram a evacuação da cidade, a saber:
Eleições que estavam muito próximas
Pedidos do governador que não deixassem a cidade e, os que deixaram, que voltassem
Recusa da matéria alarmante, por falta de espaço, pelo jornal local.
A existência de uma enorme cratera, a qual acreditava-se que conduziria a lava para o mar.
8 de maio de 1903 - dia do fênomeno, foi também feriado em Saint Pierre, era a festa da ascensão, o que incentivou a mais pessoas voltarem para a cidade.
Para se ter noção da força vulcânica, registra-se[quem?] que conseguiu arremessar pedras do tamanho de uma casa[carece de fontes?].
Entretanto, ninguém na cidade sobreviveu, com exceção de um único homem, Ludger Cilbaris. Um detido que estava preso na solitária e, justamente por isso, se safou da morte. De fato, as várias camadas de parede que constituiam sua "cela" filtraram as partículas de magma que fazem parte do fluxo piroclástico. Ainda assim, o homem maravilhoso (como ficou conhecido), sofreu sérias queimaduras e, antes de ser encontrado, passou 4 dias de agonia, fome e medo, até ser encontrado por quatro jovens estudantes.
Este evento foi um marco nos estudos vulcânicos e sabe-se que, pela idade geológica do Monte Pelair (ou Monte Pelée), haverá outras erupções de iguais proporções.
Hoje, a despeito dos 30 000 habitantes de 1902, Saint Pierre, conta com apenas 5000 habitantes, que estão muitos felizes com sua atividade econômica e com o turismo local. O famoso monte é monitorado regularmente. No museu da cidade ainda podem-se encontrar vários objetos que foram completamente deformados pelo efeito.
Obtido em "http://pt.wikipedia.org/wiki/Monte_Pel%C3%A9e"
Sabe-se que cerca de 30 mil pessoas morreram por causa da erupção, que deu uma completa nova concepção aos estudos vulcânicos. O fluxo piroclástico, uma cinza vulcânica com cerca de 300ºC, cobriu 20 km ao longo de toda cidade de Saint Pierre seguida pela lava, de aproximados 1000 ºC.
O efeito do fluxo piroclástico é tão devastador que em três minutos exterminou aquele povoado, derreteu casas, prédios. Pessoas foram encontradas queimadas, contorcidas, explodidas.
Em verdade, dois meses antes da erupção já se começava a perceber que tinha algo de errado com o vulcão; entretanto, um misto de ignorância e euforia impediram a evacuação da cidade, a saber:
Eleições que estavam muito próximas
Pedidos do governador que não deixassem a cidade e, os que deixaram, que voltassem
Recusa da matéria alarmante, por falta de espaço, pelo jornal local.
A existência de uma enorme cratera, a qual acreditava-se que conduziria a lava para o mar.
8 de maio de 1903 - dia do fênomeno, foi também feriado em Saint Pierre, era a festa da ascensão, o que incentivou a mais pessoas voltarem para a cidade.
Para se ter noção da força vulcânica, registra-se[quem?] que conseguiu arremessar pedras do tamanho de uma casa[carece de fontes?].
Entretanto, ninguém na cidade sobreviveu, com exceção de um único homem, Ludger Cilbaris. Um detido que estava preso na solitária e, justamente por isso, se safou da morte. De fato, as várias camadas de parede que constituiam sua "cela" filtraram as partículas de magma que fazem parte do fluxo piroclástico. Ainda assim, o homem maravilhoso (como ficou conhecido), sofreu sérias queimaduras e, antes de ser encontrado, passou 4 dias de agonia, fome e medo, até ser encontrado por quatro jovens estudantes.
Este evento foi um marco nos estudos vulcânicos e sabe-se que, pela idade geológica do Monte Pelair (ou Monte Pelée), haverá outras erupções de iguais proporções.
Hoje, a despeito dos 30 000 habitantes de 1902, Saint Pierre, conta com apenas 5000 habitantes, que estão muitos felizes com sua atividade econômica e com o turismo local. O famoso monte é monitorado regularmente. No museu da cidade ainda podem-se encontrar vários objetos que foram completamente deformados pelo efeito.
Obtido em "http://pt.wikipedia.org/wiki/Monte_Pel%C3%A9e"
Nenhum comentário:
Postar um comentário